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1 Introduction

In a seminal paper, Saez (2010) suggested using discontinuities in the worker’s budget

constraint as a source of identification of worker’s responsiveness to the tax rate. This

branch of the literature has grown considerably over the last few years, finding applications

in finance (Collier, Ellis, and Keys, 2021; Ewens, Xiao, and Xu, 2021a), labor (Cengiz,

Dube, Lindner, and Zipperer, 2019; Jales, 2018), environmental economics (Ghanem, Shen,

and Zhang, 2020), and many other settings.

In this chapter, we review the basic setting in which Bunching designs might be useful.

We discuss identification issues and the recent work that point out the limits of (point)

identification of elasticities under more general non-parametric settings, and how to

construct bounds for the parameters of interest in these instances. We also discuss

practical implementation issues and suggest directions for future work.

In our discussion of the estimation of taxable earnings elasticities, we outline a general

setup that nests models where the budget line is continuous and its slope changes at a

known point K (i.e., kink) or where the budget line has a jump discontinuity at a known

point K (i.e., notch) but the slope is constant otherwise. In the kink case, the slope may

either decrease (concave kink, e.g., tax rate goes up) or increase (convex kink, e.g., tax rate

goes down). In the notch case, the jump discontinuity may either be negative (negative

notch, e.g., lump-sum tax) or positive (positive notch, e.g., subsidy). Most of the applied

work so far dealt with concave kinks and negative notches, although there are important

exceptions (for examples, see Bajari, Hong, Park, and Town (2017); Kuhn and Yu (2021)).

The original branch of this literature dealt with a class of problems in which the

variable that displayed bunching was considered an outcome of interest; which could be

potentially affected by discontinuous incentives (typically, but not always, a tax schedule

with discontinuities or kinks). Recently, another branch of the literature developed, in

which researchers are asking what can be learned when the variable that displays bunching

is a treatment variable, as opposed to an outcome. In these settings, it turns out that
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bunching behavior can be used to test and correct for endogeneity in standard

reduced-form treatment effect models (Caetano, 2015; Caetano, Caetano, and Nielsen,

2020; Caetano, Caetano, Fe, and Nielsen, 2021).

This paper is organized as follows: In Section 2 we look at notches, in Section 3 we

study the case of kinks. In Section 4, we dive into the issues of non-parametric

identification, semi-parametric identification, bounds, and practical implementation issues;

in Section 5 we discuss how bunching in the treatment variable can be leveraged to test

and correct for endogeneity, and Section 6 concludes.

2 Notches

2.1 Negative Notches

Assume that a worker faces the following utility function:1

U(Y ;N) = Y − T (Y )− N

1 + 1/ε

(
Y

N

)1+1/ε

,

where Y is earnings, T (Y ) is a tax liability, N is an ability term, and ε, for reasons we

explain below, is a particular type of elasticity. To begin, assume that the worker faces a

proportional tax, so that T (Y ) = tY , where t is the marginal tax rate. In this case, taking

first-order conditions, we can solve for the worker’s optimal level of earnings, given his

ability parameter, as:

Y = (1− t)εN. (1)

Taking logs, we arrive at a log(Y ) = ε log(1− t) + log(N), which makes it clear the

interpretation of ε as a elasticity of earnings with respect to the net-of-tax rate. It allows

for a simple measure of how much earnings react (if at all) to the net-of-tax rate.

1This specific form for the utility function is convenient because it yields a constant elasticity of earnings
with respect to the net-of-tax rate given by ε.
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Figure 1: Earnings Distribution under a proportional and continuous tax rate

It is useful to write the worker’s value function, that is, the utility attained at the

optimum level of earnings. It is given by:

V0(N) = (1− t)1+εN

(
1/ε

1 + 1/ε

)
.

For reasons that will become clear later, it is useful to plot the implied distribution of

log earnings that arise from particular values of the elasticity, tax rate, and a specified

distribution of earnings. For example, if earnings are lognormal, and the elasticity ε is zero,

then the distribution of earnings will coincide with the distribution of ability. As ε rises,

individuals become more sensitive to the tax rate, and react by lowering earnings (working

less, buying leisure) and, as a result, the distribution of earnings becomes a left-shifted

version of the distribution of skill. Figure 1 displays one example of such a distribution.

Suppose now, instead, that the worker faces a discontinuous tax schedule, such as the

one analyzed by Kleven and Waseem (2013). In this instance, the worker’s tax burden

increases discontinuously once the worker crosses a particular level of earnings, which we

will denote by K. In this instance, the worker faces a tax liability function of the form

T (Y ) = tY + 1I{Y > K}∆, where ∆ is the discrete and positive increase in the worker’s

tax liability once he/she crosses the earnings threshold K. Note that once the worker
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crosses the threshold earnings K his tax liability will increase discontinuously. This is the

so-called notch.

For the workers that would, in the absence of the notch, choose earnings below the

notch point, the solution is the same as before. The workers that would choose earnings

above the notch point, however, might be better off staying right at the notch, so as to

avoid placing themselves in the higher tax interval. There is one worker, at a particular

level of skill, that is indifferent between placing himself at the notch, or behaving just as he

would do without the notch. This is the marginal buncher. Every worker with skill level

above him will prefer not to bunch. The optimal level of earnings in this case becomes:

Y (N) =


N(1− t)ε , if N < N∗

K , if N ∈ (N∗, N)

N(1− t)ε , if N > N,

(2)

where N∗ = (1− t)−εK which is the level of skill associated with the individual that would

optimally choose the threshold level even in the absence of the discontinuity, and N is the

skill level associated with the marginal individual.

Note that in this case, a continuous distribution of skill N , the resulting distribution of

earnings will be a mixed random variable, with a point mass at K and a continuous part

everywhere else. Figure 2 provides one illustration of such distribution.

It is useful to note that, for a continuous and fixed distribution of latent earnings, the

higher the elasticity parameter, the more individuals are willing to change their taxable

earnings as a result of a tax change. In other words, individuals’ behavior is more sensitive

to the tax. Thus, it is intuitive to think that, the larger the elasticity parameter, for any

given and fixed distribution of skill, the more bunching will be present. Thus, larger

bunching would be, in a way, indicative of larger elasticities and perhaps bunching behavior

could be used to identify these elasticities. This is the essence of bunching for the

identification of elasticities.
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Figure 2: Bunching at a tax notch

There are two objects that one might aim to identify from data under the presence of a

discontinuous tax schedule: The distribution of earnings that would prevail if the

discontinuity were to be removed (the latent distribution); and the elasticity parameter. If

one is able to identify the latent distribution, then it should be straightforward to identify

the elasticity. The central challenge is that the observed distribution of earnings only

coincides with the latent distribution in certain parts of its domain.

In the first wave of this literature (Saez, 2010; Kleven and Waseem, 2013; Chetty,

Friedman, Olsen, and Pistaferri, 2011), several variations of a similar procedure were

proposed with the aim to estimate the latent distribution of earnings using data from the

observed distribution in the presence of a notch. These procedures essentially estimate a

flexible parametric model using only the data that is believed to be unaffected by the

notch. Below we clarify the conditions required for these procedures to work:

Assumption 1. In an interval A containing [K,Y (N)] for which

Pr[Y 6∈ [K,Y (N)]|Y ∈ A] > 0, where Y (N) is the earnings chosen by the marginal

buncher, the latent density of earnings is equal to m(Y ; β0) for a known function m and

unknown vector of parameters β0 ∈ Rk.
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This assumption essentially states two important requirements: The earnings

distribution belongs to a parametric class over its most important part, which is the

interval (K,Y (N)) that includes all individuals that displayed a behavioral response to the

notch; and this parametric form extends at least a little beyond this interval,2 which makes

it possible to learn the shape in the distorted area by extrapolating the behavior observed

on the neighborhood of the bunching point. One special case of this assumption is when

the interval A is the whole real line. In this instance, Assumption 1 reduces to a

parametric functional form on the latent earnings distribution.3

Under this assumption and standard regularity conditions, one can hope to estimate the

parameters that characterize the behavior of the density of earnings by leveraging the

information contained in the set A \ [K,Y (N)]. To do that, one must first (i) estimate the

vector of parameters β in the area unaffected by the notch; and (ii) use the estimated

parameters to predict how the density would be in the affected range in the absence of the

notch.

Although one can use flexible methods that resemble non-parametric estimators for

such a task, it should be stressed that the identification of the latent density in the interval

affected by the notch is essentially parametric. That is, there must be a belief that one can

properly extrapolate the observed behavior in the unaffected area of the distribution

towards the affected part. We will get back to this discussion in the following sections.

One important question is then whether or not it is possible to identify the elasticity in

this setting under only a continuity assumption. It turns out that the answer to this

question is subtle. It is indeed possible to identify the elasticity in the case of a notch

(both when there is an increase in the tax and also when there is a decrease in the tax);

2Note that the upper-end of this interval, Y (N), depends on the value of the elasticity ε, an object that is
unknown to the econometrician. In other words, the excluded range of the observed domain of the earnings
distribution is not known in advance. Without a prior restriction on the parameter space that specifies an
upper bound for the value of the elasticity ε, the excluded interval to the right of the notch can be large.
We return to this point in the next sections.

3The first paper we are aware of that makes use of such an assumption in a related setting is Meyer and
Wise (1983).
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but the answer is in general negative in the case of a (concave) kink.

The key to the identification, in this case, is that – in the absence of frictions – there is

a gap in the distribution of Y between Y (N) and K. The magnitude of this gap is

informative of the elasticity.4 To see how that works, let Y (N) be the level of earnings of

the marginal buncher. For the individual to be indifferent between bunching at K and

choosing the optimum level as given by his first-order condition, it must be the case that:

V0(N)−∆ = U(K;N). (3)

Denoting by Y = (1− t)εN , we can write the terms of the equation above as:

V0(N) = (1− t)Y
(

1/ε

1 + 1/ε

)
.

It is useful to note that the only unknown objects on the left-hand side of equation (3) are

the level of earnings associated with the marginal buncher and the elasticity ε. The

remaining objects are the known value of the size of the notch ∆ and the marginal tax rate

t. As for the right-hand side, we have that:

U(K;N) = (1− t)K
(

1− 1

1 + 1/ε
(K/Y )1/ε

)
.

Once again, it is useful to note that the right-hand side of equation (3) is a function of

known objects, such as K and t, and two unknowns: The level of earnings of the marginal

buncher, and the elasticity ε. Thus, equation (3) can be used to identify the elasticity as

long as the level of earnings of the marginal buncher is identified. This level, Y , is identified

from the upper boundary of the gap in the distribution of observed earnings. Thus, the gap

in the distribution of earnings identifies the elasticity of earnings to the net-of-tax rate.5

4Note that although the object is identified under general continuity assumptions, the source of identifi-
cation is different from the one that drives the estimates used in Kleven and Waseem (2013), since they rely
on the bunching mass instead.

5Under the isoelastic functional form assumed for the utility function, there is no closed form expression
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For more details, see Theorem (1) in Bertanha, McCallum, and Seegert (2021).

2.2 Positive Notches

The discussion in Section 2.1 is about negative notches, simply referred to as notches. A

closely related yet distinct setting is the case of a positive notch; when agents are given a

lump-sum subsidy as income crosses a threshold. Although this is rarely the case in the

context of taxation, this setting is quite common in the context of pay-for-performance

compensation packages, in which workers are given bonuses whenever they reach

performance targets (see Kuhn and Yu (2021) for an example). We will, however, continue

to cast the problem in the standard setting of taxation, to ease the comparison with the

other sections in which we discuss negative notches and kinks.

In this instance, the worker faces a tax liability function of the form

T (Y ) = tY + 1I{Y ≥ K}∆, where ∆ < 0 (now a negative number) is the discrete decline in

the worker’s tax liability once he/she crosses the earnings threshold K. In other words, the

worker earns a bonus whenever his earnings cross a certain point. Note that once the

worker crosses the threshold earnings K his tax liability will decrease discontinuously. This

is the so-called positive notch.

The solution to the worker’s optimization problem in the presence of a positive notch

has three regimes in terms of agent type N , similar to the regimes in Equation 2. The

difference, however, is that the gap presents itself in the distribution of earnings below K,

as opposed to above it. One example of such setting is displayed in Figure 3.

The underlying relationship between the worker’s heterogeneity N and the chosen level

of income Y is given by:

for the elasticity as a function of the observed objects (notch location K, notch size ∆, marginal tax rate t,
and the upper end of the gap Y ), but the elasticity can be obtained from knowledge of the other objects by
means of standard numerical procedures.
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Figure 3: Earnings distribution under a positive notch

Y =


N(1− t)ε , if 0 < N < N

K , if N ≤ N ≤ N

N(1− t)ε , if N < N.

(4)

The distribution of Y is continuous below Y (N) = N(1− t)ε, there is a region with zero

mass, or a gap, between Y (N) and K, there is bunching at Y = K, and then Y is again

continuous above Y = K. The distribution of Y is observed, so the lower limit of the gap,

i.e., Y (N), is identified. That determines a relationship between N and ε, which can be

used to identify ε along the same lines as in the case of a negative notch described in the

previous section. This yields non-parametric identification of the elasticity, which is similar

to the case of negative notches demonstrated by Bertanha, McCallum, and Seegert (2021).

It is worth noting that, although these arguments are correct to suggest that the

elasticity is identified from the gap, the practical usefulness of such result is debatable. In a

modified, more realistic scenario, a fraction of workers could be unaware of the tax code, or

could face costs of adjustments or some frictions that prevent them from reacting to the

tax schedule. In these instances, the distribution will display both bunching and also some
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“missing mass”, but no gap. Thus, in practice, other strategies to identify this elasticity

might be useful. We discuss these approaches in the context of kinks in the following

sections (see Sections 3.4, 3.5, and 3.6).

3 Identification Strategies for Elasticities Using Kinks

This section reviews econometric strategies to identify the elasticity parameter using

bunching in a distribution coming from kink in a constraint. Consider an observable

distribution of a dependent variable Y. The literature focuses on models where this

distribution is generated by three components: (1) a distribution FN of unobserved agent

heterogeneity N ; (2) model parameters, which typically include an elasticity ε; and (3) a

nonlinear budget constraint. Throughout this section we use capital F to the denote the

cumulative distribution function (CDF) of a variable; lower-case f denotes the probability

density function (PDF) of a variable.

The backbone of existing identification strategies is to first derive a relationship

between observed and unobserved components of the model; and second, to solve for the

part of the unobserved components that is of interest. In the income tax example, the

observed components are: (1) parameters of the budget constraint (slopes, intercepts,

points of change) and (2) the distribution of income FY . The unobserved components are

(A) the distribution of unobserved heterogeneity FN and (B) primitives of the utility

function (i.e., elasticity parameter). Once we have the relationship between these four

components, we seek to solve for (B) in terms of (1) and (2) while imposing minimal

assumptions on (A). The fact that we have agents maximizing utility subject to a nonlinear

budget constraint leads to a distribution of income Y with distinct features. In the case of

a kink, the observed distribution of Y includes a mass point at K, referred to as bunching.

The elasticity of taxable income with respect to the net-of-tax rate may only be

identified after imposing a set of assumptions—particularly on the unobserved distribution
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FN . This is a point of considerable confusion in the literature that we hope to clarify by

defining the assumptions that were implicit in the early bunching literature. Bertanha,

McCallum, and Seegert (2021) show that it is possible to identify the elasticity by using

assumptions on FN of various levels of strength. This section begins with the general

model following Saez (2010), provides a brief intuition for the lack of identification result

without structure, defines the structure used in the original bunching estimators (Saez,

2010; Chetty et al., 2011), discusses (i) the partial identification results from Blomquist,

Newey, Kumar, and Liang (2021) and Bertanha, McCallum, and Seegert (2021), (ii) point

identification with additional data following Coles, Patel, Seegert, and Smith (2022), and

(iii) point identification with semi-parametric assumptions following Bertanha, McCallum,

and Seegert (2021), and then concludes by discussing practical issues and extensions and

future work.

3.1 Model

Consider the example from Saez (2010). The endogenous variable is taxable income Y ,

which depends on the continuously distributed disutility of labor N , the elasticity of

taxable income with respect to the net-of-tax rate ε, tax rates t0 < t1, and a concave kink

point K. The utility function is linear in consumption and non-linear in labor and has a

constant elasticity of substitution.

The observable distribution of Y that results from individual utility maximization is

given by

Y =


(1− t0)εN, if N < N (k, ε, s0)

K, if N (k, ε, s0) ≤ N ≤ N (k, ε, s1)

(1− t1)εN, if N > N (k, ε, s1) ,

(5)

where N = (1− t0)−εK and N = (1− t1)−εK.

Equation (5) maps the unobserved variable N to observed variable Y and is a function
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of (i) the kink point K; (ii) the slopes of the budget constraint on the left, S0 = (1− t0),

and on the right, S1 = (1− t1), of the kink point; and (iii) the elasticity ε. The equation

allows us to write the mixed continuous-discrete distribution of income Y , i.e., FY , as a

function of the continuous distribution of N , i.e., FN .

The researcher observes FY , K, S0, and S1, but does not observe FN and ε. The goal is

to solve for ε given the observed objects. The distribution of Y is distinct in that there is a

mass of individuals that report taxable income at the kink point K. The literature defines

this mass as the amount of bunching B, that is,

B ≡ P (Yi = K) = P
(
N (K, ε, S0) ≤ Ni ≤ N (K, ε, S1)

)
(6)

= FN

(
N (K, ε, S1)

)
− FN (N (K, ε, S0)) . (7)

We can also conceptualize the amount of bunching as the difference in the cumulative

distribution functions of a counterfactual distribution FY0 . The variable counterfactual

income Y0 represents the income agents would have chosen in the absence of a tax change

at the kink, i.e., when t0 = t1. In this case,

B =

∫ K+∆Y

K

fY0(u) du = FY0(K + ∆Y )− FY0(K), (8)

where ∆Y represents the range of values that change to the bunching point when the tax

changes. Equations (5), (7), and (8) are the basis for all estimators in the literature. We

briefly describe some of these estimators and compare their strengths and weaknesses in

sections 3.3–3.6. Before doing that, though, we briefly discuss when an elasticity can be

identified.
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3.2 It is Impossible to Identify the Elasticity without Structure

The goal of this section is to show that it is impossible to identify the elasticity if we do

not assume anything beyond continuity for the counterfactual distribution of income.

Bunching estimators proposed by Saez (2010) and Chetty et al. (2011) make implicit

assumptions about that distribution. The main issue is that the elasticity value that one

identifies with the help of these implicit assumptions is generally very sensitive to small

changes in the assumptions.6

It is useful to first rewrite the main equations of the previous section in logs.

Lower-case variables denote the natural log of upper-case variables. We have, y = εs0 + n if

n < n, y = εs1 + n if n > n, or y = k otherwise; B = P[y = k] = Fn(n)− Fn(n) and

B =
∫ k+∆y

k
fy0(u) du = Fy0(k + ∆y)− Fy0(k).

Figure 4 illustrates the problem of identification for the quasi-linear utility model with

constant elasticity. The distribution in Panel a is identified from the data, but the

distribution in Panel b is not fully identified. Panel b shows the distribution of income that

agents would have reported in the counterfactual world of no tax change at the kink. The

nature of the problem allows us to learn some aspects of fy0 given our knowledge of fy

(Bertanha et al., 2021). First, we know that the portion of fy0 to the left of k is identical to

the portion of fy to the left of k, i.e., fy0(y0) = fy(y0) for y0 < k. Second, the portion of fy0

to the right of k + ε(s0 − s1), where ε is unknown, is identical to the portion of fy to the

right of k, i.e., fy0(y0) = fy(y0 − ε(s0 − s1)) for y0 > k. Finally, the area under fy0 over the

bunching interval [k, k + ε(s0 − s1)] equals the bunching mass B, where B is observed as

part of the distribution of y. We know B but we do not know φ, that is, the shape of fy0 in

that interval. The only thing we know about φ are its values at the boundaries of the

interval. In other terms, φ(k) = fy0(k) = fy(k
−) and

φ(k + ε(s0 − s1)) = fy0(k + ε(s0 − s1)) = fy(k
+), where fy(k

+) and fy(k
−) are side limits of

6We discuss assumptions on the distribution of Y0 but these are equivalent to assumptions on the distri-
bution of N .
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the PDF of y.

Current bunching estimators assume a shape for φ in order to identify the elasticity.

One example of an assumption is the trapezoidal approximation that Saez (2010) uses,

which is displayed in Figure 4c.7 In this case, the formula for the area of the trapezoid

relates quantities that are identified (B, fy(k
−), fy(k

+)) to the elasticity ε, which is then

identified. The main issue with this and related approaches is that the value of ε one solves

for is highly dependent on the assumption on φ.

A priori we want to be general and allow for any possible counterfactual distribution of

income that is continuous. That means that φ could have any possible shape, as long as it

is continuous over that interval. With this level of generality, it is impossible to identify the

elasticity (Blomquist and Newey, 2017). If φ is peaked extremely high, we obtain area B

by integrating over a very small interval [k, k + ε(s0 − s1)], which translates into a small

elasticity; if φ is flat, we obtain the same area B by integrating over larger interval

[k, k + ε(s0 − s1)], which translates into a bigger elasticity. The bottom line is that we may

obtain any elasticity we want by using different shapes of φ.

It is necessary to have either more data variation or structure to identify an elasticity

from this model with a convex kink. A series of papers derive methods using different

combinations of additional data and structure (Saez, 2010; Chetty et al., 2011; Blomquist

et al., 2021; Coles et al., 2022; Bertanha et al., 2021; Marx, 2022; Hamilton, 2018). We

briefly discuss some of them and their strengths and weaknesses.

3.3 Original Bunching Estimators

The original bunching estimators focused on the size of bunching to recover an elasticity.

These estimators build on the fact that the elasticity increases with the amount of

bunching, ceteris paribus. The previous section demonstrates, however, that the elasticity

can also increase with the shape of the unobserved counterfactual distribution, ceteris

7Different from the discussion here, Saez (2010) works with variables in levels instead of logs. See Section
3.3 below.
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Figure 4: The Identification Problem

(a) Distribution of Observed Income y (b) Distribution of Counterfactual Income y0

(c) Trapezoidal Approximation

Notes: Panel a shows the probability density function (PDF) of the observed distribution of income y,
which has a bunching mass B at the kink k. Panel b displays the counterfactual PDF of income y0 in
the absence of tax changes. All variables are in logs. The unobserved PDF of y0 relates to the observed
PDF of y as explained in the main text; however, it is impossible to back out the segment φ and ε without
further assumptions on the PDF of y0. Panel c illustrates an example of assumption on φ: the trapezoidal
approximation. The formula for the area of the trapezoid relates B and other observed quantities to the
elasticity, allowing for identification.
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paribus. It is therefore critical to understand the assumptions being made about the

counterfactual distribution and the sensitivity of the estimates to those assumptions in

evaluating different methods.

Consider the estimator given in Equation (6) of Chetty et al. (2011). We obtain this

estimator by taking our Equation (8) and adding the assumption that the PDF fY0 is

constant inside the bunching interval [K,K + ∆Y ]; specifically, FY0(u) = a+ fY0(K)u for

some scalar a and u ∈ [K,K + ∆Y ]. This assumption restricts the class of the distributions

of N such that it is equivalent to assuming that N is uniformly distributed in that region

(Bertanha et al., 2021). With this assumption Equation (8) can be written as

B =

∫ K+∆Y

K

fY0(u) du = FY0(K + ∆Y )− FY0(K)

=fY0(K)∆Y = fY0(K)K

[(
1− t0
1− t1

)ε

− 1

]
.

With the additional approximation for small tax changes that [(1− t0)/(1− t1)]ε − 1

∼= ε ln[(1− t0)/(1− t1)], Chetty et al. (2011) finds the elasticity is

ε ∼=
B/fY0(K)

K ln
(

1−t0
1−t1

) . (9)

Subsequent work, therefore, that use Equation (9) are implicitly restricting the

distribution of N to be uniform in that region. This assumption has come under criticism

and in some cases the elasticity estimate has been shown to be sensitive to this assumption

(Blomquist et al., 2021; Coles et al., 2022).

Alternatively, the estimator in Equation (5) of Saez (2010) is less restrictive than the

estimator in Chetty et al. (2011) by using a trapezoidal approximation. The trapezoidal

approximation assumes the PDF is affine, which allows the counterfactual distribution fY0

to have a non-zero slope in the bunching interval. Specifically, the use of the trapezoidal
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approximation allows the amount of bunching in Equation (8) to be written as

B =

∫ K+∆Y

K

fY0 (u) du ∼=
(
fY0(K + ∆Y ) + fY0(K)

2

)
∆Y, (10)

∼=
1

2

(
fY (K+)

(
1− t1
1− t0

)ε

+ fY (K−)

)
K

[(
1− t0
1− t1

)ε

− 1

]
. (11)

Saez (2010) uses Equation (11) to solve for the elasticity as an implicit function of the side

limits of fY , (fY (K−), fY (K+)), the tax rates, the kink point and the bunching mass.

While the affine assumption is more flexible than the uniform assumption, it relies on a

linear approximation being good within a small interval. The problem, however, is that

without a priori knowledge of the elasticity, the size of the interval is unknown and could

be large (Bertanha et al., 2021).

These original bunching estimators pioneered methods that allowed researchers to

investigate behavioral responses previously unstudied due to a lack of experimental or

quasi-experimental data, panel data, instrumental variables, etc. These estimators have

also sparked an innovative literature to estimate elasticities with different and weaker

assumptions, given the reasonable objections to the stark assumptions in these estimators.

These new methods provide researchers with a set of tools to estimate elasticities with

weaker assumptions and visual tests of appropriateness of the assumptions.

3.4 Partial Identification—Bounding the Elasticity

Blomquist and Newey (2017) and Bertanha, McCallum, and Seegert (2018) provide

methods to partially identify the elasticity using nonparametric restrictions on the

distribution of N. More recently, Goff (2022) develops partial identification methods using

bi-log concavity shape constraints. The main advantage of these bounds is that they

require the least amount of structure and no additional data to partially identify the

elasticity. The bounds of Blomquist and Newey (2017) partially identify the elasticity by

assuming the PDF of N is monotone. The bounds of Bertanha et al. (2018) partially
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identify the elasticity by assuming a shape restriction that the slope of the PDF of N is

bounded by a maximum slope M. The bounds of Bertanha et al. (2018) have four valuable

properties (1) the bounds have closed form solutions, (2) a positive elasticity is assured for

any distribution with bunching, (3) it nests and is easily comparable to estimates using a

trapezoidal approximation, and (4) it is easily computed using the Stata package

bunching.8

Figure 1 by Bertanha et al. (2021) provides visual intuition for how the bounds work

(this figure comes from Bertanha, McCallum, and Seegert (2022)). Panel b in that figure

provides the counterfactual distribution of income in the absence of the kink, where the

gray region is unobserved as those individuals bunch in the observed distribution. Panels c

and d provide potential distributions for different shapes φ. The bounds increase as the

maximum slope M gets larger. With a larger slope the distance between k − εs0 and

k − εs1 is larger for the upper bound (panel c) and smaller for the lower bound (panel d).

Figure 3 by Bertanha et al. (2021) shows the bounds implemente using real data. The

figures display how the bounds change as the maximum slope M changes. One feature of

this graph is that it provides the trapezoidal approximation estimate in the red-dashed

line. This figure then shows the sensitivity of the estimate to different assumptions on the

shape of the distribution φ.

These bounds provide an important sensitivity check for researchers identifying an

elasticity with stricter assumptions.

3.5 Point Identification with Additional Data

A series of papers following Coles et al. (2022) develop methods that rely on additional

data to identify the elasticity of interest. These methods use the additional data to

estimate a counterfactual distribution. With a counterfactual distribution, these methods

estimate the change in Y, ∆Y, using Equation (8) (see for example Equation 7 of Coles

8See Bertanha, McCallum, Payne, and Seegert (2022).
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et al. (2022)). The elasticity then is calculated using the formula9

ε =
∆Y/K

ln
(

1−t0
1−t1

) . (12)

The strength of these methods is that they simply restrict the counterfactual

distribution on its own using shape or functional form restrictions; they also leverage

additional data to estimate the counterfactual. The ability of these methods to provide

policy relevant estimates depends on the strength of the estimation of the counterfactual

distribution. In most of these methods the counterfactual distribution is estimated using a

control group that is unaffected by the kink, at least locally. For example, Coles et al.

(2022) use the distribution of firms with different levels of net-operating-losses (NOLs) as a

control group because these firms experience the kink point at different levels of Y.

Specifically, a firm with $10,000 in NOLs experiences a 0% tax rate until they earn $10,000

of income and then 15% for each dollar after (until the next kink). Firms with $11,000 in

NOLs provide a natural control group. These firms are unaffected by a kink at $10,000

because their kink is at $11,000. Firms with $11,000 in NOLs, therefore, can be used to

estimate what the distribution for firms with $10,000 in NOLs would have looked like in

the absence of the kink. Other papers use distributions across years or subsamples when

the nonlinear budget constraint changes, see for example Hamilton (2018) and Gelber,

Jones, and Sacks (2020). For example, Gelber et al. (2020) uses the earnings density of

72-year-olds to estimate a counterfactual distribution for 70- and 71-year-olds that face a

nonlinear budget constraint due to the Earnings Test in social security.

The weakness of these methods is that there may not always be a plausible control

group to estimate the counterfactual distribution. For example, changes across years may

be less convincing due to other potential policy and economic changes.

9See Equation (4) of Coles et al. (2022).
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3.6 Semi-parametric Point Identification

Bertanha, McCallum, and Seegert (2021) develop two different methods that rely on

additional structure on the distribution of N plus covariates in the dataset. The key

insight of these methods is to connect the bunching methods to censored regression

models.10 The first method is a truncated Tobit model with covariates. The second

method is a censored quantile regression. These methods rely on different identifying

assumptions and therefore provide complementary evidence. Two additional advantages of

these methods are that (1) they are easily implemented using existing statistical software

for censored regression models (or the custom built Stata package bunching11) and (2)

there are visual tests of the appropriateness of the identification assumptions.

The first method is a Tobit elasticity estimator that adds structure to the problem by

restricting the unobserved distribution FN . With the assumption that the conditional

distribution N given covariates X is normal, the elasticity could be easily identified with a

Tobit model—but this assumption is unnecessarily strong. Bertanha, McCallum, and

Seegert (2021) provide sufficient conditions on the joint distribution of (N,X) for

consistency of the Tobit elasticity estimator (Lemma 2 of Bertanha, McCallum, and Seegert

(2021)). These are semi-parametric restrictions on the distribution of (N,X) that do not

require normality of the conditional distribution N given covariates X (see simulation

examples by Bertanha, McCallum, and Seegert (2022)). In short, these restrictions are: (i)

the distribution of N is a mixture of normals averaged over the non-parametric distribution

of X; and (ii) the Tobit best-fit distribution for Y matches the observed distribution of Y .

The restriction (i) becomes weaker with more variation in covariates because the class

of distributions of N becomes richer the bigger is the class of distributions of X. For small

elasticities, one can show that restriction (ii) is implied by linear restrictions on the first

two moments of the distribution of (N,X). Restriction (ii) is easy to verify in practice.

10The methods in Bertanha, McCallum, and Seegert (2021) build on a large literature of censoring models,
see surveys by Maddala (1983), Amemiya (1984), and Greene (2005).

11See Bertanha et al. (2022).
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Researchers simply need to compare the Tobit best-fit distribution of Y to the observed

distribution of Y as a visual test of the appropriateness of this method. Figure 6 by

Bertanha et al. (2021) demonstrates this visual test in a stark example of the Tobit model’s

robustness to a lack of normality from simulations. This figure graphs the observed

distribution in tan bars and the black line gives the Tobit model fit. Despite the observed

data being asymmetric and including spikes (and generally not looking normally

distributed) the Tobit model fits the data well, satisfying restriction (ii), and the Tobit

elasticity estimate is very close to the true elasticity. The additional advantage of this

estimator is that standard quasi-MLE asymptotic inference applies.

Bunching is naturally a method that relies on data close to the kink. Bertanha,

McCallum, and Seegert (2021) recommend estimating truncated Tobit models for

decreasing intervals of Y values centered at the kink—and their Stata package bunching

graphs the estimates for different window sizes in its default setting. The advantage of

truncation is that it only requires the Tobit identification assumptions to hold in a small

interval around the kink. In practice, using smaller windows tends to improve the

distribution fit but also tends to increase the variance as it relies on less data. Again, the

researcher can compare the Tobit best-fit distribution of Y and the observed distribution of

Y as a visual test of whether the identification assumption is likely to hold in their specific

context. Figure 2 by Bertanha et al. (2021) demonstrates this visual test using the example

from Bertanha et al. (2021). To demonstrate how the truncation works, this example uses

a misspecified model, as it does not include covariates. In panel d, the Tobit best fit line

using 100% of the data (black line) does not fit the simulated data (tan bars) and does not

recover the true elasticity estimate. Panels e shows the Tobit best fit lines using 40% of the

data, and the fit is better using the truncated sample. Panel f graphs the elasticity

estimate for different amounts of the data used for estimation and shows that the estimate

gets closer to the true elasticity of 1 as the percent of the data decreases and the Tobit

model fit increases. The figures are all produced using the Stata package bunching.
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The second method is a quantile elasticity estimator that restricts the conditional

quantile of N given covariates X. The approach estimates the conditional quantile of Y

given X, allowing for different intercepts before and after the kink. If there is sufficient

variation in the covariates above and below the kink, then the elasticity is identified as a

function of the two intercepts. This only requires a parametric restriction on a conditional

quantile of the distribution of N given X, that is, a semi-parametric restriction on the

distribution of (N,X). A weakness of this method is that it may be computationally

difficult and it requires sufficient variation in covariates (e.g., continuous rather than

discrete X). Bertanha, McCallum, and Seegert (2021) provides practical steps to estimate

the elasticity building on Chernozhukov and Hong (2002).

Researchers looking to estimate policy-relevant elasticities now have a suite of

estimators that rely on identifying assumptions of various degrees of strength. The

estimators developed by Bertanha, McCallum, and Seegert (2021) are (1) easy to

implement, (2) transparent about the identifying assumptions (some have visual ways of

being tested), and (3) are consistent for the true elasticity under assumptions that are

weaker than those implicitly made by the original bunching estimators.

3.7 Concave Kinks

Most of the discussion thus far is on convex kinks, simply referred to as kinks. A possible

extension of these methods is to the case of concave kinks, that is, when the marginal tax

rate decreases as income crosses a threshold.12

In the case of concave kink, we have that t0 > t1 and I1 = I0 + (1− t0)K in the budget

constraint,

C = I{Y ≤ K}[I0 + (1− t0)Y ] + I{Y > K} [I1 + (1− t1) (Y −K)] . (13)

12For an example of such a setting, Bajari et al. (2017) study a very similar problem in the context of
hospitals’ reimbursement schemes.

22



The shape of an agent’s indifference curve depends on the agent’s type N . As N

increases, the point of the tangency of the highest indifference curve shifts to the right,

moving from just one point with Y < K, to two points Y < K and Y ′ > K, and finally to

one point Y > K. The threshold level N is found when the optimal utility of picking

Y < K is equal to the utility of picking Y ′ > K. Said differently, if optimal income for

agent type N is Y (N), there exists N such that

I0 + (1− t0)Y (N)− N

1 + 1/ε

(
Y (N)

N

)1+1/ε

= I1 + (1− t1)Y (N+)− N

1 + 1/ε

(
Y (N+)

N

)1+1/ε

, (14)

where Y (N+) is the side limit of Y (N) as N ↓ N , I0 + (1− t0)Y (N) is consumption when

income equals Y (N) < K, I1 + (1− t1)Y (N+) is consumption when income equals

Y (N+) > K, and I1 = I0 + (1− t0)K. to ensure continuity of the budget line.

The solution for Y has two regimes in terms of agent type N, as opposed to three

regimes as in Equation (5) above. Specifically, the income agents report depends on

whether they are below or above a certain threshold N,

Y =

 N(1− t0)ε , if 0 < N ≤ N

N(1− t1)ε , if N < N.
(15)

Equations (14) and (15) provide a closed-form solution for the threshold level N , in

terms of ε, K, t0, and t1:

N = (1 + ε)K(1− t0)/
[
(1− t0)ε+1 − (1− t1)ε+1

]
. (16)

The distribution of Y is continuous except for an interval around the kink point where

the distribution of Y has zero mass (see Figure 5 for an example). The lower and upper

bounds of that gap can be written as nonlinear functions of observable quantities and the
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Figure 5: Earnings distribution under a concave kink

elasticity. Specifically, Y = N(1− t0)ε and Y = N(1− t1)ε.13

We can substitute the closed form solution for N from Equation (16) into Y and Y to

find two conditions relating observables and the unknown elasticity. Note, Y and Y are

observable in the data—they are the beginning and end of the gap, that is, the region of

zero mass in the distribution of Y . Specifically,

Y = (1− t0)1+ε(1 + ε)K/
(
(1− t0)ε+1 − (1− t1)ε+1

)
(17)

Y = (1− t1)ε(1 + ε)K(1− t0)/
(
(1− t0)ε+1 − (1− t1)ε+1

)
. (18)

The elasticity ε can then be solved for using the numerical methods. Unlike the case of

a convex kink, it is possible to non-parametrically identify the elasticity without having to

assume more than just continuity on the distribution of N .

13Note that Y > Y because t0 > t1.
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4 Practical Issues and Future work

4.1 Practical Issues

There are several important practical considerations when estimating elasticities using

distributions shaped by nonlinear budget constraints. The first practical consideration is

that the model of the observed distribution necessarily abstracts from additional factors

that may shape the observed distribution. In some cases, the elasticity estimates are not

sensitive to these additional factors. In other cases, the elasticity estimates are sensitive

and these additional factors need to be taken into account.

The additional factor that has received the most attention in the literature is what is

referred to as adjustment costs or optimizing frictions. Optimizing frictions limit how

precisely agents can adjust Y. These frictions are then used to explain why in some

contexts the observed distribution of Y has increased mass not only right at the kink but

also around it. If the observed distribution of Y has diffuse bunching, then not accounting

for optimizing frictions could bias the elasticity estimate.

There are two different styles of proposed solutions to incorporate optimizing frictions.

The first set of solutions try to recover the distribution in the absence of optimizing

frictions and then proceed to estimate the elasticity using the methods discussed above.

The best solution to this problem is a proper deconvolution theory that models and

decomposes the distribution. In the absence of a comprehensive theory for optimizing

errors, less general but practical solutions have been proposed. For example, Bertanha,

McCallum, and Seegert (2021) develop a filtering procedure where optimizing frictions are

modeled as an additive error the optimal income variable. Their filtering procedure works

well when 1) the support of the error distribution is small, finite, and known by the

researcher and 2) agents that bunch are more affected by the frictions than agents that do

not. The Stata package bunching has an option that performs this filtering procedure. A

similar filtering procedure that uses the bulge in the cumulative distribution function to
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filter out the error is proposed by Alvero and Xiao (2020). The second set of solutions

model frictions as being part of their models. For example, Gelber, Jones, and Sacks (2013)

uses policy-induced changes in the magnitude of kinks to estimate adjustment costs.

Similarly, Bertanha, McCallum, and Seegert (2021) suggest that their Tobit model may be

extended to include optimizing frictions following censoring models that include

measurement error.

The second practical consideration is that empirical methods often rely on tuning

parameters, e.g., bandwidth choices. In practice, these tuning parameters can be as

important as identifying assumptions. Coles et al. (2022) provide a comparison of elasticity

estimates across methods with different tuning parameters. In their setting, they find the

elasticity estimates to be considerably sensitive to choices such as the bunching window

that is required in the original bunching methods. These findings suggest a large benefit to

methods with relatively few tuning parameters or methods that have been shown to be less

sensitive to these tuning parameters.

4.2 Extensions and Future Work

There is considerable scope for additional work that uses observed distributions to identify

model primitives. This section has provided some foundations for how to identify model

primitives in examples with nonlinear budget constraints. Future work can build off of

these in at least three ways; build different models that underlie observed distributions,

extend the features of the model, and use the model to estimate different parameters.

4.2.1 Build different models that underlie observed distributions

The insights of the original bunching models can be applied to different agents and

contexts. The original bunching estimators are developed in the context of individual

federal income taxes. Subsequent work has demonstrated how to extend this to different

contexts. For example, Einav, Finkelstein, and Schrimpf (2017) develop models in the
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context of prescription drug insurance for the elderly in Medicare Part D. An important

insight from this paper is that different models can lead to different implications despite

these different models fitting the basic distribution. As another example, Coles, Patel,

Seegert, and Smith (2022) develop a model where firms maximize profits and respond to

non-linear incentives in the corporate tax schedule.

Each context may have idiosyncratic features that are important to model. For

example, work in progress by Agostini, Bertanha, Bernier, Bilicka, He, Koumanakos,

Lichard, Massenz, Palguta, Patel, Perrault, Riedel, Seegert, Todtenhaupt, and Zudel

(2022) develop methods to focus on a kink in the corporate tax schedule at zero. This work

focuses on the kink at zero because it is common to corporate tax schedules around the

world. The empirical hurdle is that most bunching methods log the endogenous variable

(taxable income in this example) and therefore are ill-suited to investigating a kink at zero.

This work overcomes this hurdle by developing a transformation method and a two-step

approach.

The addition of a model and structure in these cases provide researchers with

additional tools to estimate model parameters and perform policy experiments. We find

extensions in this style to be extremely fruitful for policy-relevant research.

4.2.2 Extend the features of the model

Future work can add important features to the model. Three areas that have received

attention are the extensive margin, dynamic effects, and decomposing elasticities into

different components. Gelber, Jones, Sacks, and Song (2021) extend the basic model to

include fixed costs of having positive earnings. Their setting is the nonlinear incentives in

Social Security created by the Annual Earnings Test that effectively creates a kink with a

marginal tax rate above the exempt amount. The inclusion of these fixed costs creates the

possibility of an extensive margin response where individuals respond to the kink by

reducing their earnings to zero. Gelber et al. (2021) find the extensive margin is
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empirically important as their employment elasticity is relatively large, 0.49 in the full

sample, and for several reasons is likely a lower bound.

Le Maire and Schjerning (2013) and Marx (2022) extend the model to consider dynamic

effects. Le Maire and Schjerning (2013) derive a bunching formula from a dynamic model

of income shifting in the context of self-employed workers in Denmark. Their model allows

them to estimate that 50-70% of observed bunching is due to income shifting. To put this

in context, the elasticity of taxable income estimate from the static model is between 0.43

and 0.53 and with the dynamic model is between 0.14 and 0.20. Marx (2022) similarly

extends the static model to a dynamic setting to show how serial dependence in choice

variables can bias static-model estimates. This work also considers extensive margin

responses, heterogeneous treatment effects, and long-run effects.

Hamilton (2018), Le Maire and Schjerning (2013), and Coles et al. (2022) extend the

model to decompose bunching into different components to help understand how agents

respond to incentives. Hamilton (2018) separately considers the components of taxable

income and finds that a two thirds of the response is due to changes in gross income and

one third of the response is due to changes in deductions. Coles et al. (2022) uses panel

data and a basic assumption of how revenues and costs co-move to decompose their

elasticity of corporate taxable income estimate into economic responses and tax-motivated

accounting transactions. They find that in response to a 10% increase in the expected

marginal tax rate firms decrease taxable income by 6.1% from accounting transactions (e.g.,

revenue and expense timing) and 3.0% from economic responses (e.g., scaling operations).

4.2.3 Estimate different parameters from the model

Future work can extend the methods described here to estimate parameters other than

elasticities of endogenous variables. Current work is focused in two areas; (1) estimating

the change in incentives at thresholds, and (2) estimating policy relevant parameters that

require weaker assumptions than elasticities.
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In many contexts, the researcher may be interested in the nonlinear incentive structure.

For example, Burgstahler and Dichev (1997) note that firms avoid negative earnings and

therefore there is excess mass just above zero. Ewens, Xiao, and Xu (2021b) and Bertanha,

Seegert, and Yang (2022) are developing methods to estimate the nonlinear incentives that

exist for firms (or managers) that induce this level of excess mass. The key hurdles in this

work include how to (1) integrate frictions into the model, (2) differentiate kinks, notches,

or both, (3) account for agent responsiveness, and (4) identify the change in incentives in

light of the impossibility result discussed in Section 3.2.

In some contexts estimating an elasticity may not be necessary to provide

policy-relevant insights. For example, researchers may be interested in the tax revenue

implications for a given policy change, where an elasticity estimate may be sufficient but

not necessary. In work in progress, Moore (2022) shows how the bunching mass can be

used as a sufficient statistic for the revenue effect of behavioral responses to small changes

of the threshold without having to make assumptions necessary to identify an elasticity.

Future work can both apply the methods in Moore (2022) to provide policy-relevant

estimates and extend these methods to different types of policy changes.

4.2.4 Discussion

Overall, there remains many parameters of interest that can be estimated using observed

distributions and nonlinear budget constraints, incentives, or tax schedules. To do so,

researchers should seek out methods with the weakest restrictions that also incorporate key

features.

5 Bunching for Causal Inference

A new branch of the literature focuses on how bunching can be leveraged to test or correct

for endogeneity in reduced-form causal models. The methods leverage the insight, first
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brought up in Caetano (2015), that the bunched observations tend to be discontinuously

different in comparison with the observations near the bunching point. Thus, for instance,

consider the variable “average number of cigarettes per day among pregnant women,”

which has a bunching of 80% of the sample at zero. Figure 6 shows that mothers who do

not smoke in pregnancy have a discontinuously higher education, and are discontinuously

more likely to be married in comparison with mothers who smoke any positive amount.

Since the discontinuous patterns in these figures are the standard among all the observable

mother, father and pregnancy characteristics which are correlated with smoking, it is

expected that a similar pattern exists among the unobservable variables that are correlated

with smoking.

Mother’s demographic characteristics.

Figure 6: Education (years)
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Figures 6 and 7: Dots represent average values referring to the pregnant mothers for each level of daily
cigarette consumption. The vertical lines represent the 95% confidence interval of the mean. Source: Caetano
(2015), p. 1592.

5.1 Testing Identification Assumptions

Define Yi(x) as the potential outcome of observation i under treatment level x, and let Xi

denote observation i’s actual treatment. Suppose that Yi(x) is differentiable. For a given

vector of controls Zi, we say that

Xi is exogenous ⇐⇒ Xi ⊥⊥ Yi(x)|Zi.
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If Xi is exogenous, then the average conditional marginal treatment effect function

E[Y ′i (x)|Xi = x, Zi] can be identified.14 We would like to test the exogeneity of Xi.

Caetano (2015) showed that, if the distribution of Xi has bunching at Xi = x̄,15 it is

possible to test the exogeneity of Xi. When we compare the outcome of observations at the

bunching point and those around it, the treatment itself is very similar. Therefore, there

cannot be more than a marginal difference in the outcome that is due to treatment

variation. Any discontinuity in the outcome (conditional on controls) at the bunching point

must be due to one of two reasons. First, the treatment effect may be discontinuous at the

bunching point. Second, there may be discontinuous selection on unobservables, that is,

the distribution of the unobservable confounders is discontinuous at the bunching point

(and therefore Xi is endogenous). If we can assume that Yi(x) is continuous in x at x̄ with

probability one conditional on Zi, then the first possibility is ruled out. We can then test

the exogeneity of Xi by checking if E[Yi|Xi = x, Zi] = is continuous in x at x̄. If Xi is

exogenous, then E[Yi|Xi = x, Zi] = E[Yi(x)|Xi = x, Zi] = = E[Yi|Zi] must be continuous.

This test makes sense when Xi has bunching because, as discussed above, confounders

tend to be discontinuously different at the bunching point. Specifically, if Xi is endogenous

and has bunching at x̄, then Yi(x)|Xi = x, Zi will usually be discontinuous in x at x̄.

Therefore, if Xi is endogenous, E[Yi|Xi = x, Zi] will usually be discontinuous in x at x̄.

To implement this test nonparametrically, we need to concern ourselves with the

dimension of Zi. Caetano (2015) proposes aggregating the discontinuities, and testing

instead if an average of the discontinuities is discontinuous. A convenient aggregation

14In this case, E[Y ′
i (x)|Xi = x, Zi] = dE[Yi|Xi = x, Zi]/dx. Estimation depends on assumptions on

E[Yi|Xi = x, Zi]. For example, if E[Yi|Xi = x, Zi] is assumed to be linear on Xi and Zi, the marginal
treatment effect estimator is the coefficient of Xi on a regression of Yi on Xi and Zi.

15Bunching is not formally defined in most of the literature. A necessary condition for bunching is that
0 < P (Xi = x̄) < 1. A sufficient condition is to add to the previous condition the requirement that, in a
neighborhood of x̄, Xi is continuously distributed with a continuous density. The specific strength of the
requirements implicit in the definition of bunching vary across the different methods discussed in this section.
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explored in that paper yields the following testing quantity:

θ = lim
x↓x̄

E [E[Yi|Xi = x̄, Zi]− Yi|Xi = x] .

This is particularly convenient when there is a large amount of bunching at x̄. In this case,

estimation can be done in a two step process: (1) estimate E[Yi|Xi = x̄, Zi]

nonparametrically,16 and (2) do a local linear regression of Ê[Yi|Xi = x̄, Zi]− Yi onto Xi at

x̄, using only observations such that Xi > x̄. The approach just described is known as the

Discontinuity Test. See empirical implementations in Caetano (2015), Rozenas, Schutte,

and Zhukov (2017), Erhardt (2017), Pang (2018), Bleemer (2018), and Bleemer (2020).

More recent papers in this literature have implemented a much simpler approach, first

introduced in Caetano and Maheshri (2018), and studied in Caetano et al. (2021), which is

known as the Dummy Test. This test is suitable to cases where some semi-parametric

assumptions on Yi(x) are made, and estimation takes these into account. For example,

suppose that Yi(x) = βx+ Ui, where Ui is not observed, and we intend to estimate β as the

coefficient of Xi in a regression of Yi onto Xi and Zi. In this case, the main identification

assumption is that E[Ui|Xi, Zi] = Z ′iα, which implies that E[Yi|Xi, Zi] = βXi + Z ′iα. The

setting in this example includes difference-in-differences approaches which are estimated

using linear regressions with fixed effects, which is a popular empirical design for causal

inference. The Dummy Test consists of adding the dummy 1(Xi = x̄) to the regression (i.e.

regress Yi onto Xi, Zi and 1(Xi = x̄)) and implementing a simple t-test that the coefficient

of 1(Xi = x̄) is significant.

The Dummy Test operates under the same principles as the Discontinuity Test, in

leveraging the idea that, if Xi has bunching and is endogenous, the distribution of

Ui|Xi = x, Zi is likely to be discontinuous in x at x̄. This would then generate a

discontinuity in E[Yi|Xi = x, Zi] at the bunching point, which can be detected by including

16Or, in practice, as nonparametrically as possible. Machine learning strategies or a kitchen sink regression
may be used. Since this is not a boundary expectation, virtually any nonparametric regression technique
may be considered.
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the dummy 1(Xi = x̄) in the regression. While the Discontinuity Test tests exclusively the

exogeneity of Xi, the Dummy Test is a joint test of the exogeneity of Xi and the assumed

functional form, and is generally more powerful. Implementations of the Dummy test in

applied work can be seen in Caetano and Maheshri (2018), Ferreira, Ferreira, and Mariano

(2018), Lavetti and Schmutte (2018), De Vito, Jacob, and Müller (2019), Caetano, Kinsler,

and Teng (2019), Kaneko and Noguchi (2020), Caetano, Caetano, and Nielsen (2021),

Jürges and Khanam (2021), Hussein (2021), and Fe and Sanfelice (2022). A similar dummy

strategy can be implemented in other semi-parametric models that are popular in empirical

research, including nonlinear regression models estimated with GMM, probits and

discrete-choice models. In all these cases, the main identification assumptions can be tested

by including 1(Xi = x̄) in the set of controls and performing a simple t-test of the

significance of its coefficient.

The same ideas are leveraged in Khalil and Yıldız (2019) to build a test of the

exogeneity of Xi in a model where the treatment variable does not have bunching (and

may, in fact, be binary), but one of the control variables does. Furthermore, Caetano,

Rothe, and Yıldız (2016) showed that bunching on the treatment variable can be used to

test the validity of the instrumental variable in a triangular model.

5.2 Identifying Treatment Effects

In the general model discussed in the previous section, all observations at the bunching

point have the same treatment. Therefore, after controlling for observables, any variation

in the outcomes of those observations must be due to the unobservables. Bunching

provides a glimpse into the endogeneity variation unencumbered by treatment variation.

With some additional structure, it may be possible to use the variation at the bunching

point to correct for endogeneity.

The available strategies in the literature focus on bunching at a corner of the

distribution of the treatment, which is the most common form of bunching. For simplicity

33



of notation, we suppose that x̄ = 0 and is the lower extreme, so that Xi ≥ 0. The main

structural restriction in the methods discussed below is that observations at the bunching

point can be ordered. This is parameterized by a latent variable X∗i , as

Xi = max{0, X∗i }.

If Xi is a choice variable, it is useful (but not necessary) to understand X∗i as the optimal

choice arising from an unconstrained optimization problem. For example, in the maternal

smoking example, Xi is the average daily number of cigarettes, and X∗i is the optimal

number as resulting from the maximization of her utility. If the maximization yields a

positive number of cigarettes (or zero), then she smokes that number, and thus Xi = X∗i . If

the maximization yields a negative number, then she will smoke Xi = 0.

Caetano et al. (2020) develop a correction in the model

Yi(x) = βx+ Ui,

where

E[Ui|X∗i , Zi] = δX∗i + Z ′iα.

Then,

E[Yi|Xi, Zi] = βXi + Z ′iα + δ(Xi + E[X∗i |X∗i ≤ 0, Zi]1(Xi = 0)).

If it is possible to estimate E[X∗i |X∗i ≤ 0, Zi], then Xi + Ê[X∗i |X∗i ≤ 0, Zi]1(Xi = 0) can be

added to the regression as a correction term. The same type of strategy can be used in

other, more general, models also considered in Caetano et al. (2020).

Caetano et al. (2020) propose identifying E[X∗i |X∗i ≤ 0, Zi] using models on the shape

of the conditional distribution of X∗i . For example, if X∗i |Zi ∼ N (µ(Zi), σ
2(Zi)), for

arbitrary functions µ and σ, then E[X∗i |X∗i ≤ 0, Zi] = µ(Zi)− σ(Zi)
2 · λ(−µ(Zi)/σ(Zi)),

where λ(·) is the inverse Mills ratio. If P (Xi = 0|Zi) ≥ 0.5 and X∗i |Zi is symmetric in the
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tails, then E[X∗i |X∗i ≤ 0, Zi] = F−1
i (1− Fi(0))− E[Xi|Xi ≥ F−1

i (1− Fi(0)), Zi], where

Fi(x) = P (Xi ≤ x|Zi).

All the quantities in the two cases above are identifiable, and may be nonparametrically

estimated with standard methods, but Caetano et al. (2020) propose a simpler empirical

strategy in two steps: (1) discretize the Zi using hyerarchical clustering (Hastie, Tibshirani,

and Friedman (2009)). Let the cluster of observation i be denoted Ci. (2) Do the

estimation within each cluster under the assumption that, for all i such that Ci = c,

E[X∗i |X∗i ≤ 0, Zi] = E[X∗i |X∗i ≤ 0, Ci = c]. In the normality case, the second step is

equivalent to running a Tobit regression on a constant within each cluster c. The estimate

of the constant is µ̂(Zi) for all i such that Ci = c, and the estimate of the standard

deviation is σ̂(Zi). Analogously, in the tail symmetry case, for all i such that Ci = c, one

would estimate Fi(0) as the probability of bunching in cluster c, F−1
i (q) as the quantile q of

Xi in cluster c, and E[Xi|Xi ≥ a, Zi] as the mean of the Xi ≥ a in cluster c.

Implementations of this method in applied research can be seen in Caetano et al. (2021)

and Caetano, Caetano, Nielsen, and Sanfelice (2021).

Caetano, Caetano, and Nielsen (2022b) considers partial identification strategies when

the assumptions on the distribution of X∗i |Zi are relaxed. They show that a bound on β

can be obtained under no distributional assumption. An opposite sharp bound can be

obtained under mild assumptions such as that, for x ≤ 0, the density of X∗i |Zi, fX∗|Z(x),

has no peaks larger than the right limit of the density of Xi|Zi at the bunching point.

Bounds can be narrowed if assumptions on fX∗|Z(x) for x ≤ 0 are strengthened, such as

assuming concavity or convexity, both of which are testable conditions, or that fX∗|Z

belongs to families such as bi-log concave or log concave.

Recently, Caetano, Caetano, and Nielsen (2022a) showed that it is possible to obtain

nonparametric identification of treatment effects using bunching. Specifically, they show

that E[Y ′i (0)|X∗i = 0], the average marginal treatment effect at the bunching point for the

population with X∗i = 0, is identifiable if (1) the treatment effects are continuously
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differentiable at the bunching point; (2) the endogenous selection as a function of X∗i is

continuously differentiable at the bunching point; (3) the endogenous selection bias is

monotonic on X∗i for X∗i ≤ 0; and (4) the distribution of the idiosyncratic variation

conditional on Xi is continuous at the bunching point. Identification is obtained by the use

of the change of variables theorem, which relates the bias of endogeneity for X∗i = 0 to the

ratio of limx↓0 fX|Z(x), and the density of the selection bias term evaluated at X∗i = 0. The

latter term is identified because, at the bunching point, the treatment does not vary, and

therefore any variation in outcome is due only to the variation of the selection and the

idiosyncratic term. The density of the selection can be deconvoluted from the density of

the idiosyncratic term using the observations near the bunching point.

This leg of the bunching literature, and especially the advancements in Caetano et al.

(2022a), show that the potential of bunching as a source of identification is still far from

exhausted, and there is likely much more to be discovered.

6 Conclusion

In this chapter, we provide a thorough review of modern bunching methods. We study the

limits of non-parametric identification of taxable earnings elasticity under continuity

assumptions in the settings of kinks and notches. We also discuss what can be identified

when point identification is not feasible under general continuity conditions, such as in the

case of standard, convex kinks. We provide practical guidance for the applied

econometrician, discuss how to implement these procedures using canned packages in

Stata, and suggest directions for future work.

We also provide the first review of another important and growing branch of this

literature that deals with bunching in the treatment variable in standard reduced-form

causal models. We discuss how these settings allow testing for endogeneity, and how one

can go beyond, into implementing endogeneity corrections.
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